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ABSTRACT 

In our increasingly interconnected world, software security is an 

increasingly important issue for development teams. However, 

there is too much security work to do for these teams as security 

needs have out-scaled security resources. To help prioritize security 

efforts, professionals use the attack surface of a system, or the sum 

of all paths for untrusted data into and out of a system, to identify 

security relevant code. However, identifying code that lies on the 

attack surface is a difficult and resource-intensive process. Our 

research proposes the use of crash dump stack traces as an empirical 

metric for approximating the attack surface.  We hypothesize that 

code that appears on crash dump stack traces represent activity that 

has put the system under stress, and is therefore indicative of 

potential security vulnerabilities. The goal of this research is to aid 

software engineers in prioritizing security efforts by approximating 

the attack surface of a system via crash dump stack trace analysis. 

In a trial on Mozilla Firefox, the risk-based attack surface 

approximation selected 15.8% of files and contained 73.6% of 

known vulnerabilities. Randomly sampling 10% of crash dump 

stack traces for inclusion in our analysis resulted in only 2.7% 

fewer known vulnerabilities included on our attack surface. 

Through our approach, we look to optimize effort for the security 

community in finding, fixing and preventing security 

vulnerabilities.  

Categories and Subject Descriptors 

D.2.8 [Software Engineering]: Metrics – complexity metrics, 

process metrics, product metrics 

General Terms 

Management, Measurement, Design, Economics, Security. 

Keywords 

Stack traces, crash dumps, attack surface. 

1. PROBLEM AND MOTIVATION 
The attack surface of a system can be used to determine which parts 

of a system could have exploitable security vulnerabilities.  Items 

not on the attack surface of a system are unreachable by outside 

input, and, therefore, less likely to be exploited. If outside input 

cannot be passed to code containing a security vulnerability, 

engineering hours spent working on finding and fixing that 

vulnerability could be spent elsewhere. If generating the attack 

surface of a system was a more straightforward process, security 

professionals could focus their efforts on code containing 

vulnerabilities that are reachable, and therefore exploitable, by 

malicious users. Reducing the amount of code to be inspected may 

help improve the economics of security assessments and allow for 

more efficient proactive reviews of potentially vulnerable code. 

The Open Web Application Security Project (OWASP) defines the 

attack surface of a system as the paths in and out of a system, the 

data that travels those paths, and the code that protects the paths 

and the data [1]. In the research community, Howard et al. 

introduced the concept of an attack surface, describing entry points 

to a system that might be vulnerable along three dimensions: targets 

and enablers, channels and protocols, and access rights [5]. Later, 

Manadhata and Wing [12] formalized the notion of attack surface, 

including methods, channels, untrusted data, and a direct and 

indirect entry and exit point framework that identifies methods 

through which untrusted data passes. 

The software engineering community lacks a practical means of 

identifying the parts of the system that are on the attack surface. 

The goal of this research is to aid software engineers in prioritizing 

security efforts by approximating the attack surface of a system via 

crash dump stack trace analysis. We propose risk-based attack 

surface approximation (RASA), an automated approach to 

identifying parts of the system that are contained on the attack 

surface through stack trace analysis. We parse stack traces, adding 

all code found in these traces onto RASA. Code that appears in 

stack traces caused by user activity is on the attack surface because 

it appears in a code path reached by users.  

Crash dump stack traces from user-initiated crashes have three 

desirable attributes for measuring attack surfaces: (a) they represent 

user activity that puts the system under stress; (b) they include both 

direct and indirect entry points; and (c) they provide automatically 

generated control and data flow graphs. We seek to assess the 

degree to which these attributes of stack traces support the 

identification of attack surfaces.  We call our approach “Risk-

Based Attack Surface Approximation” because it is an efficient 

means of identifying the part of the attack surface that is most 

susceptible to containing vulnerabilities. 

We assess our approach by analyzing the percentage of actual 

reported vulnerabilities in the code and whether they occur in our 

approximated attack surface. The higher the percentage of 

vulnerabilities covered on our attack surface approximation and the 

smaller the subset of total code artifacts that appear on our 

approximation, the better our approach is performing. In addition, 

we also explore randomly sampling crash dump stack traces for 

building our approximation. If a randomly sampled subset of crash 

dump stack traces results in similar performance to using every 

available crash, then sampling may be an effective way to reduce 

the amount of data required by RASA. 
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2. BACKGROUND AND RELATED WORK 
In this section, we provide a brief overview of related work. 

2.1 Attack Surface 
Howard et al. [5] provided a definition of attack surface using three 

dimensions: targets and enablers, channels and protocols, and 

access rights. Not all areas of a system may be directly or indirectly 

exposed to the outside. Some parts of a complex system, e.g. 

Windows OS, may be for internal use only and cannot be reached 

or exploited by an attacker. For example, installation routines are 

left in the system, but they are never accessed again and are unlikely 

to have security implications. 

Manadhata et al. [11] describe how an attack surface might be 

approximated by looking at Application Program Interface (API) 

entry points. However, the Manadhata approach does not cover all 

exposed code, as the authors mention. Specifically, internal flow of 

data through a system was not identified. While the external points 

of a system are a useful place to start, they do not encompass the 

entirety of exposed code in the system. Internal points within the 

system could also contain security vulnerabilities that the reviewer 

should be aware of. Previous efforts to determine the attack surface 

of a system have used API scanning techniques [12], but these 

techniques have limitations in terms of how much code they can 

cover. Further, their approach to measuring attack surfaces required 

expert judgment of security professionals to determine if code is 

security relevant. 

In our previous RASA study [15], researchers found a correlation 

between binaries that appear on stack traces from crash dumps and 

code that contained at least one security vulnerability fix. The 

correlation could be useful to security professionals when targeting 

security reviews of codebases. By targeting security efforts to 

binaries in the ASA instead of the entire codebase, security 

professionals could save engineering hours. The researchers 

created the ASA by parsing stack traces from Windows 8 OS, and 

including any binaries involved in a stack trace in their 

approximation. They evaluated the effectiveness of their approach 

by comparing the approximation against the location of historical 

vulnerabilities in Windows 8 OS. In that study, 48.4% of shipped 

binaries seen in at least one crash dump stack trace in Windows 8 

OS contained 94.8% of the vulnerabilities seen over the same time 

period [15]. 

2.2 Using Crash Reports 
The use of crash reporting systems, including stack traces from the 

crashes, is becoming a standard industry practice1 [16][2]. Bug 

reports contain information to help engineers replicate and locate 

software defects. Liblit and Aiken [10] introduced a technique 

automatically reconstructing complete execution paths using stack 

traces and execution profiles. Later, Manevich et al. [13] added data 

flow analysis information on Liblit and Aiken’s approach. Other 

studies use stack traces to localize the exact fault location 

[7][17][16]. Lately, an increasing number of empirical studies use 

bug reports and crash reports to cluster bug reports according to 

their similarity and diversity, e.g. Podgurski et al. [14] were among 

the first to take this approach. Other studies followed [2][9]. Not all 

crash reports are precise enough to allow for this clustering. Guo et 

al. [3] used crash report information to predict which bugs will get 

fixed. Zimmermann et al. [18] assessed the quality of bug reports 

                                                                 

1 http://www.crashlytics.com/blog/its-finally-here-announcing-

crashlytics-for android/ 

to suggest better and more accurate information helping developers 

to fix the bug. 

With respect to vulnerabilities, Huang et al. [6] used crash reports 

to generate new exploits while Holler et al. [4] used historic crashes 

reports to mutate corresponding input data to find incomplete fixes. 

Kim et al. [8] analyzed security bug reports to predict “top 

crashes”—those few crashes that account for the majority of crash 

reports—before new software releases. As mentioned previously, 

we expanded on previous studies by exploring the correlation 

between code appearing in a stack trace and having historical 

vulnerabilities [15]. 

3. APPROACH AND UNIQUENESS 
In this section, we describe the implementation of RASA and our 

approach to randomly sampling stack traces for a case study. 

3.1 RASA Implementation 
To implement RASA for a target system, we first select a collection 

of stack traces from crash dumps from the software system we are 

analyzing. These stack traces are chosen from a set period of time. 

For each individual stack trace pulled from a crash dump, we isolate 

the binary, file, or function on each line of each stack trace, and 

record what code artifact was seen and how many times it has been 

seen in a stack trace. Each of the code artifacts from stack traces 

should then be mapped to a code artifact in the system. For 

example, if the file foo.cpp appears in a stack trace, the matching 

foo.cpp in system should be identified. A software system may 

have multiple foo.cpp files, so a method for identifying which 

foo.cpp was in the crash is required. A list of code artifacts in a 

software system could come from toolsets provided by the 

company maintaining the system or pulled directly from source 

control, in the case of open source projects. 

We have created a toolset to parse each individual stack trace in our 

target dataset in sequence, and extract the individual code artifacts 

that appear on each line. The tool then outputs the frequency in 

which each unique code artifact appears in a stack trace from the 

parsed set. For this particular study, we do not consider the number 

of times a code artifact appears; only that it appears at least once 

 

Figure 1: A visual representation of what an attack surface is 

for a system; the shaded area is the attack surface, where input 

flows through the system. 

 

 



To tie stack trace appearances to the codebase, we generate a list of 

all source code files from the system under inspection and combine 

that list with the list of appearances in stack traces. A visualization 

of the code appearing on RASA can be seen in Figure 1. The 

individual tools developed for some of these steps can be found on 

our GitHub2 page. In addition to the list of files on the ASA, we 

count the number of artifacts that have security vulnerabilities.  

After we have the list of code that appears on at least one stack trace 

and the code that had at least one vulnerability fix, we calculate two 

RASA evaluation metrics: 

1. The percentage of code in the target software system that 

appears in at least one stack trace (or the Risk-based 

Attack Surface Approximation), and 

2. The percentage of files with security vulnerabilities that 

appear in at least one stack trace, or vulnerability 

coverage. 

For 1) above, we calculate the percentage of files found on stack 

traces via the following formula. We define this metric as File 

Coverage (FC): 

(1) 𝐹𝐶 =
𝑐𝑜𝑑𝑒 𝑎𝑟𝑡𝑖𝑓𝑎𝑐𝑡𝑠 𝑜𝑛 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑠𝑡𝑎𝑐𝑘 𝑡𝑟𝑎𝑐𝑒

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑑𝑒 𝑎𝑟𝑡𝑖𝑓𝑎𝑐𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚
  

For 2) above, we calculate our vulnerability coverage via the 

following formula. We define this metric as Vulnerability 

Coverage (VC): 

(2) 𝑉𝐶 =  
 𝑐𝑜𝑑𝑒 𝑎𝑟𝑡𝑖𝑓𝑎𝑐𝑡𝑠 𝑤𝑖𝑡ℎ 𝑣𝑢𝑙𝑛𝑠. 𝑜𝑛 𝑠𝑡𝑎𝑐𝑘 𝑡𝑟𝑎𝑐𝑒

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑑𝑒 𝑎𝑟𝑡𝑖𝑓𝑎𝑐𝑡𝑠 𝑤𝑖𝑡ℎ 𝑣𝑢𝑙𝑛𝑠.
 

3.2 Data Requirements 
The initial study on RASA was performed on Microsoft Windows 

8 [15] and was done with millions of crashes. Not all organizations 

have as much crash information as these large organizations, so the 

feasibility of RASA on smaller datasets should be explored. To 

explore this idea, we take percentages of available stack traces from 

the target software system, from 90% of the total stack traces 

available to 10% of the available stack traces. The 100% case is 

covered by our initial experiment in Section 3.1. We can then 

explore the difference in code coverage in the resultant RASA, and 

the difference in covered security vulnerabilities in the resultant 

RASA. Our hypothesis is as we increase the number of stack traces 

in our RASA, our code coverage and vulnerability metrics will 

converge towards our metrics for 100% stack trace use. 

For each of these slices, we perform the random sampling analysis 

as outlined in section 3.2. From those results, we can see how 

sampling affects the result of ASA. Our hypothesis is as we 

increase the number of stack traces in our ASA, the effect of 

random sampling on the end result will decrease. 

3.3 Uniqueness 
While other researchers have made use of crash dump stack traces 

as a potential metric for exploring software defects, to our 

knowledge there is little previous work on using crash dump stack 

traces as a metric for security vulnerabilities. In addition, previous 

work has focused on individual stack traces for analysis, while our 

approach focuses on the aggregation of a large set of stack traces to 

develop our results. 

                                                                 

2 https://github.com/theisencr/stack-trace-parser 

To our knowledge, RASA is the first approach based on empirical 

data collection to approximate the attack surface of a system. Other 

attack surface tools and approaches, such as those described in 

section 2.1 and tools such as Microsoft’s Attack Surface Analyzer, 

focus on program analysis techniques rather than existing datasets. 

An approach based on analysis of stack traces may be more 

practical for the generalization of attack surface analysis, as many 

organizations already collect crash dump stack traces from their 

customers. Repurposing this existing dataset could lower the 

barriers to entry for implementation of RASA in the field. 

4. RESULTS AND CONTRIBUTIONS 
In the initial RASA study [15], we found a correlation between 

code artifacts that appear on stack traces generated by the system 

and where historical vulnerabilities discovered by security 

professionals have been fixed in code. The attack surface 

correlation could be useful to security professionals when targeting 

security reviews. By targeting security efforts at these exposed 

areas instead of the entire codebase, security professionals can 

maximize the impact of the engineering hours they have available 

to them. In the previous study, it was found that 48.4% of binaries 

in Windows contained 94.8% of historically seen vulnerabilities 

[15]. Limiting security engineering efforts to half of the codebase 

while still finding the majority of potential bugs is a tradeoff teams 

can make. 

After applying RASA, 15.8% of files shipped with Firefox are 

included on the attack surface, and this subset contains 73.5% of 

the historical vulnerabilities seen over the same period of time. 

These results suggest that code that appears in stack traces derived 

from crashes are more likely to have vulnerabilities as well. If the 

program is crashing, that indicates a data flow path that has put the 

system under stress and may contain errors that result in security 

vulnerabilities. From the result, we conclude that the automated 

attack surface approximation approach may be useful in limiting 

the scope of code that developers need to review while missing a 

minimal number of potentially flawed areas. 

We have also improved the granularity of attack surface 

approximation compared to the previous study [1], in addition to 

the quantitative improvements in coverage and specificity. By 

performing attack surface approximation at the file level, we 

provide more actionable results for practitioners. While a single 

binary file could contain thousands of individual files for 

developers to review, files are typically a more manageable level 

of granularity for a developer, depending on the development 

practices of the organization using attack surface approximation. 

The average number of files covered by RASA and the average 

number of security vulnerabilities covered by RASA at various 

random sampling points is also found in Figure 2 and Figure 3. As 

the size of the random sampling increases, we see that the number 

of files covered by RASA also increases, while the standard 

deviation of the individual runs shows no discernable trend. For 

coverage of security vulnerabilities, we also see a slight increase in 

coverage as the random sampling size increases. In the case of 

security vulnerability coverage, we see that the standard deviation 

decreases as the sample size increases. In our full results, only 6 

files associated with a security vulnerability fix appeared in only 

one stack trace from the Firefox dataset. In the dataset, only 15 files 

associated with security vulnerability fixes appeared in less than 10 

crashes. In the full dataset, the difference in total vulnerability 



coverage from a 10% sample to the complete set of crashes is 11 

files. 

From these results, we conclude that randomly sampling stack 

traces for the Firefox dataset is an effective approach for reducing 

the amount of data required to implement RASA. A 10% random 

sample has a minimal effect on the final approximation, meaning 

organizations can store a fraction of their customer crashes and still 

make use of our approach to improve their security efforts. Our 

intuition told us that random sampling would cause an equivalent 

drop in coverage of security vulnerabilities: why is this not the 

case? Our observation that few files appear less than 10 times in the 

full Firefox dataset could possibly explain why random sampling 

had a minimal effect on vulnerable file coverage. In order for a 

vulnerable file to longer be covered by RASA, it cannot appear in 

any stack trace from a crash in the target system. For example, a 

30% sampling of crashes is likely to include at least one occurrence 

of foo.cpp if it occurs 8 times in the complete dataset. 

While this result indicates that RASA can make effective use of 

sampling for large projects like Firefox, it also has implications for 

smaller projects that may not have crash dump stack traces on the 

same scale. For a smaller project that collects 10% of the crashes 

that Firefox does, RASA may still be a valuable technique for 

prioritizing security efforts. Overall, these results are promising for 

the implementation of RASA across a wide variety of software 

projects. 

In this paper and in previous work, RASA was generated based on 

an on/off approach. If a code artifact appeared in at least one crash 

dump stack trace, then RASA considers that code entity as part of 

the attack surface of the system. However, further prioritization 

within RASA may be possible. The frequency in which code 

appears in stack traces from crash dumps may be an additional 

metric to explore for further prioritization of security reviews 

beyond RASA. The more a code artifact is involved in crashes, the 

more likely it might be that that code artifact has a related security 

vulnerability. 

In addition to our initial feasibility study and random sampling 

study, we have also explored the effect of frequency of appearance 

of code on crash dump stack traces and their likelihood of 

containing a security vulnerability. We have found a casual 

relationship between frequency of appearance and our FC and VC 

metrics. In future studies, we plan to explore this frequency of 

appearance metric in more detail. 

5. FUTURE WORK 
RASA currently looks at a specific time period of crashes and 

vulnerabilities to build its attack surface approximation. In the 

future, we plan to explore how turning this time period into a sliding 

window instead of a static period of time. For example, do crashes 

from a previous time slice predict vulnerabilities that appear in 

future slices? 

RASA is an approximation of the attack surface, and as such not 

every vulnerability is covered by the approach. Analyzing the types 

of vulnerabilities not covered by RASA is an important step for 

determining the “blind spots” of the approach so teams can use 

other methods to find and fix those vulnerabilities. 

RASA currently looks at the code entities themselves as possible 

locations for security vulnerabilities. The code entities themselves 

may not be the interesting metric from a security perspective. The 

relationships between code entities may do a better job of pointing 

out potential vulnerabilities. Many common vulnerability types are 

the result of bad data handling, including SQL injection attacks and 

buffer overflow attacks. Examining the relationships between files 

(or other code entities at various levels of granularity) and 

determine which relationships appear in crashes most frequently. 

These bad handoffs may point us towards where vulnerable code 

lives. 

In addition to the statistical results from mining crash dump stack 

traces, exploring shapes within graph representations of the crash 

dump stack traces is another area we plan to explore to narrow the 

scope of code that could contain security vulnerabilities. In 

particular, do certain shapes of incoming and outgoing nodes result 

in more frequent sightings of vulnerabilities? We hypothesize that 

certain shapes, such as many code entities calling into one entity 

but that entity only calling out to few entities, may exhibit more 

vulnerabilities than other shapes. 

 

Figure 2: Graph of the percentage of files included on the 

RASA at random samples, with error bars indicating the 

deviation between samples. 

 

Figure 3: Graph of the percentage of vulnerabilities covered 

by RASA at random samples, with error bars indicating the 

deviation between samples. 
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Where code appears on graph representations of software systems 

may also be important for prioritization of security efforts. For 

example, if security bugs are more likely to appear on the “edge” 

of a software system, or closer to API entry points, then 

prioritization of those code artifacts may be useful for finding 

security vulnerabilities faster. 

Visualizing the shape and edge effects may also result in 

meaningful impact for security professionals as well. Building 

dynamic visualizations similar to the one presented in Figure 1 may 

help security professionals better understand the systems they are 

analyzing. Developers already make use of call graphs to 

understand the relationship between code artifacts in software 

systems, and extending the graph metaphor to crash dump stack 

traces could make Figure 1 an effective visualization of the attack 

surface for developers. 

RASA may create several positive impacts on the software 

engineering community. An automated approach to attack surface 

generation could allow security teams to make more efficient use 

of their time, reducing the amount of hours used on these tasks, 

allowing for more efficient discovery of vulnerabilities, or a 

combination of both. Because the development of the attack surface 

of their product would be automated, they would not need to tie up 

resources developing one themselves. For organizations without a 

security team or just starting security efforts, RASA gives them the 

first steps toward targeting what limited security resources they 

have. In addition, the analysis of how much data is required can 

help engineering firms make informed decisions on how many 

resources need to be dedicated to implementation of RASA.   
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