
PLDI: U: Type Assisted Synthesis of Recursive
Transformers on Algebraic Datatypes

Jeevana Priya Inala
MIT

jinala@mit.edu
Advisor: Armando Solar-Lezama

1. Problem and Motivation
As programming languages are being developed to be used
in a wide range of industrial applications, it is necessary to
introduce convenience language constructs that abstract a
lot of the underlying low-level code. For example, the for
statement in languages like Java and C is a convenience
construct that can be purely expressed in terms of the while
statement. Compilers for these languages, however, have a
set of core language constructs which makes it easier for
them to do further analysis and optimizations. Therefore,
the first step that a compiler does is to transform these
convenience constructs to the core constructs–a process
known as “desugaring”. Any typical compiler has numerous
such desugaring transformations and these are often very
large and difficult to write correctly. For instance, one of
the research compilers that is being developed in my group
has hundreds of desugaring passes which on total account
for about 10,000 lines of code. Hence, in this work, we
want to explore if automated program synthesis can help
generate these transformations directly from the semantics
of the languages and thus, reducing a lot of burden off the
programmers. The goal of program synthesis is to simplify
programming by allowing users to express their intent as
specifications over non-deterministic inputs and the synthesis
tools search for a candidate program (in this case, the correct
transformation) that satisfies these specifications.

In fact, these kinds of desugaring transformations fall into
a very general category of programs. We can treat a program
as an expression tree with each node representing a language
construct–this representation is known as Abstract Syntax
Tree (AST). Desugaring is the transformation from one AST
to another AST that semantically preserves the meaning of
the original program. Moreover, AST is a special type of the
more general category called Algebraic Datatypes (ADT).
For example, a binary tree ADT is shown below:

adt BTree {
Branch { int v; BTree l ; BTree r; }
Leaf { int v; }
Empty {} }

Our goal is to develop a program synthesis tool for this
general class of programs i.e. synthesizing transformations on
recursive algebraic datatypes. Other examples of ADT trans-
formations include end user programming like data structure
manipulations, figuring out formula simplifications for ex-
pression ASTs (used in compiler optimizers) and generating
constraints for type inference (used in program analysis tools).
A natural way of specifying these programs is to establish a
functional relation between the input ADT and the expected
transformed ADT. For example, the correctness specification
for desugaring languages can be defined in terms of the output
on an interpreter on the original and desugared languages.

The main problem in synthesizing recursive ADT trans-
formations is that the search space is extremely huge. Hence,
it is necessary to have an efficient way of describing the
space of possible implementations that the synthesizer should
consider and an efficient search strategy. Recently, Syntax-
guided-synthesis (SyGus) [1] has gained popularity as an
approach to synthesis as it leverages a syntactic description
of the space of possible programs (called as template) to
improve the scalability of synthesis. The motivation behind
SyGus is to allow programmers to specify the high level struc-
ture of the program they are interested in while leaving out
the low-level error prone regions of the code for the synthesis
tool to figure out. The SyGus approach works well for our
problem if the search space encoded by the template is as
compact as possible. However, writing these efficient tem-
plates is hard and hence, there is not much gained benefit if
users have to write a template for every synthesis problem.

Our key insight is that it is possible to make these templates
highly reusable for the domain of ADTs by relying on the
type information from ADTs. The re-usability means that
for most problems, a user does not have to write her own
description but can rely instead on a generic description
from a library. We also describe a new optimization called
inductive decomposition to aid the synthesis of recursive
transformations on ADTs. Inductive decomposition leverages
the specification inductively to break the synthesis problem
into smaller and easy to solve synthesis problems. The
efficiency gained by this optimization, together with the

ability of our system to benefit from user guidance, allows
our system to attack problems that could not be synthesized
by other related systems. We show, for example, that our
system can automatically infer desugaring functions for
simple languages including lambda calculus representation
for pairs and booleans just from the language interpreters.
In another case study, we show that the system is powerful
enough to infer type constraints for a simple language from a
description of the semantics of the type constraints. Moreover,
several of our benchmarks come from transformation passes
implemented in our own compiler and synthesizer, and we
are now incorporating simplification rules synthesized by this
system into our own synthesizer.

2. Background and Related Work
Sketch: SKETCH [6] is a state of the art tool for generating
programs from specifications which are given as partial C
like programs. Sketch specifications contain special “holes”
denoted by “??” that represent arbitrary integers (or booleans).
The purpose of SKETCH tool is to instantiate these “holes”
with fixed values so that all assertions and constraints speci-
fied in the program are satisfied. SKETCH does this by using
a constraint based approach (CEGIS) and uses a SAT solver
internally.

Our work extends the SKETCH language by introducing
high level holes (synthesis constructs) that operate on al-
gebraic datatypes and using bi-directional type checking to
transform these high level holes to just integer holes.

Leon: The most relevant piece of related work is the syn-
thesizer Leon [4] which can synthesize provably correct re-
cursive functions involving algebraic datatypes. Even though,
it is possible to describe the functional specifications like
interpreters in Leon, it does not scale well on these kinds of
benchmarks. One reason for this is that Leon lacks support
for user defined space of programs and hence, has to search
for programs from a very general space of programs. On the
other hand, this allows Leon to be more automatic. Our tech-
nique of using re-usable spaces of programs achieves the best
of both worlds.

Other synthesis tools: There has been a some recent work
on type directed synthesis of programs on ADTs [2, 5], but,
these are limited to programming-by-example settings, and
cannot deal with the kind of complex specifications (for ex-
ample, involving interpreters) that we use in our benchmarks.
Rosette [9] is a solver aided language that has shown how to
embed synthesis capabilities in DSLs. However, Rosette is
a dynamic language and lacks static type information, so its
templates are not re-usable.

3. Uniqueness of Approach
We introduce SYNTREC which is implemented as an exten-
sion to the open source SKETCH synthesis system [7]. We
make the following contributions:

adt srcAST{
NumS{ int v; }
TrueS{ }
FalseS{ }
BinaryS{ opcode op; srcAST a; srcAST b; }
BetweenS{ srcAST a; srcAST b; srcAST c; } }

adt dstAST{
NumD{ int v; }
BoolD{ bit v; }
BinaryD{ opcode op; dstAST a; dstAST b; } }

adt opcode{ AndOp{} OrOp{} LtOp{} GtOp{} ... }

Figure 1: ADT for two small expression languages

• We define new type-directed synthesis constructs (TDC)
which when combined with polymorphic generators allow
programmers to express the high-level structure of the
intended program in a re-usable manner while enabling
the synthesizer to derive the low-level details.

• We use bi-directional type checking rules to efficiently
reduce the new synthesis constructs.

• Finally, we develop a novel optimization called inductive
decomposition that further enhances the scalability of the
system.

3.1 Running example
In order to describe the synthesis features in the language, we
use the problem of desugaring a simple language as a running
example. Specifically, the goal is to synthesize a function

dstAST desugar(srcAST src){ . . . }

that can translate from a source AST to a destination AST.
The ADT definitions for these two ASTs are shown in Fig-
ure 1. The type srcAST, for example, has five different variants,
two of which are recursive. Here, the trickiest desugaring is
that of theBetweenS variant which computes a < b < c and
needs to represented in terms of BinaryD in the destination
AST.

The first step to synthesize a function is to specify its
intended behavior. In the case of desugaring functions, the
best way to specify their behavior is by establishing the
equivalence of their respective interpreters. Specifically, our
language allows us to state a constraint of the form
assert (interpretS (exp) === interpretD(desugar(exp)))

The constraint above states that interpreting an arbitrary
expression exp in the source language should be equivalent
to desugaring exp and interpreting the resulting expression
under the destination language. The functions interpretS
and interpretD are two interpreters written in SYNTREC and
defined recursively over the structure of the respective ADTs.
As we will explain in Section 3.3, our synthesizer contains a
novel optimization called inductive decomposition that can
take advantage of the structure of the above specification in
order to significantly improve the scalability of the synthesis
process.

The programmer must also describe a space of possible
implementations from which the desugar function must be
synthesized. This space is described through a template, a
partial program that describes the high-level structure of
the solution while leaving the details unspecified. Thanks
to the new constructs presented in this paper, our language
makes it possible to define these spaces in a very concise
and reusable way while still achieving significant scalability
benefits comparable to what one can achieve with very
specialized and hard to write templates.

In the case of the above example, the programmer only
has to write a single line of code in the body of the desugar
function.

dstAST desugar(srcAST src){
return recursiveReplacer (src , desugar); }

In the code above, recursiveReplacer is a polymorphic gener-
ator [6] that is defined in a library and it represents a space
of programs parameterized by the type of src . The code for
recursiveReplacer is shown below.

generator T recursiveReplacer <T, Q>(Q src, fun rec){
switch(src){

repeat_case:
T[] a = map(src.{T}, rec);
return ??({a, src .??}); }}

A generator is like a hygienic macro, and can be thought of
as a function that gets inlined and specialized to its calling
context at compile time. The generator above describes a very
general computational pattern. It contains several of the new
synthesis constructs that are described in the more detail in
Figure 3. This generator represents a recursive replacer (with
holes for the low-level details that need to be figured out by
the synthesizer) that pattern matches over the input AST src
and in each case, recursively calls the function rec on its
children and finally generates a new AST expression of type
Qwhose terminals will either be constants or the results of the
recursive calls or some fields of src . Type Q is determined by
the calling context of this generator. For the running example,
our system takes about 50s to synthesize this code and a
compacted version of the code generated from the one line
sketch is shown in Figure 2. It is worth noting that while the
generator itself is not trivial to write, the same generator can
be used to synthesize desugaring functions for a variety of
languages, because while the details of the desugar function
will be different for different languages, those details will be
discovered by the synthesizer in every case; the generator
only describes the common high-level structure.

3.2 Type Directed Synthesis Constructs
For the domain of algebraic datatypes, three operations are
very important–pattern matching, accessing fields and con-
structing new ADTs. Our type directed constructs (as shown
in Figure 3) exactly capture these operations on ADTs. The
running example illustrated some of these type-directed con-
structs (TDCs). Each of these constructs represents a set of

dstAST desugar(srcAST src) {
switch(src) {

case NumS: return NumD(v = src.v);
/∗ Some cases are abstracted to save space ∗/

case BetweenS:
dstAST[3] arr = { desugar(src .a), desugar(src .b),

desugar(src .c) };
return BinaryD(op = AndOp(),

a = BinaryD(op = LtOp(), a = arr[0], b = arr [1])
b = BinaryD(op = LtOp(), a = arr[1], b = arr [2]));

}}

Figure 2: Synthesized solution for the running example

repeat_case := Expands into a pattern matching for each variant
s.?? := Returns an arbitrary field of s

s.{T} := Returns an array of all fields of s of type T
??(e1, ..., en) := Constructs an ADT expression using the arguments

as terminals

Figure 3: Type directed constructs

possible expressions in the language, but the key is that the
exact set is determined by the type of expressions passed to
the TDC, and by the type expected by the context in which
the TDC is used. The running example also showed that these
type-directed constructs can be particularly useful when ap-
plied in the context of polymorphic generators, because then
the generator can be used with many different types, and
the space of program fragments that the generator can pro-
duce will depend on the types of its arguments. These TDCs
can also be combined with polymorphic generators to cre-
ate richer constructs such as, for example, iterators over data
structures.

In order to define the semantics of these new synthesis
constructs, we define a type directed transformation Γ `
e

θ−→ e′ which reduces all the new constructs to sets of
expressions in the base language. Here, Γ is the environment
that tracks types of variables in the program. The goal is to
have the synthesizer choose among this set of expressions
for one that satisfies the specification. This is done by using
unknown integer/boolean constants, since the semantics of
programs with unknown constants have been well described
in previous work [8]. The type θ that parameterizes the
transformation is used to propagate information top-down
about the type of the expression that is required in a given
context and thus, making the rules bi-directional. Detailed
transformation rules for all these rules can be found in the tech
report [3]. The following example shows how bi-directional
type inference and expansion work for a field selector hole
(s.??).

EXAMPLE 3.1. Consider the program below

adt A {int l1 ; int l2 ; A l3 ; A l4;}
A x; int y = x.??; A z = x.??

Since the types of y and z are int andA respectively, we need
to evaluate the following

Γ ` x.??
int−−→ E1 Γ ` x.??

A−→ E2

Here, the bottom-up type information flows through x which
is of type A and top-down type information flows from the
expected context (i.e. the type on the judgment arrow). Here,
the ADT A has two fields of type int, namely l1, l2, and has
two fields of type A, namely l3, l4 and hence, the expansion
produces the following results where the choice construct
requires the synthesizer to choose among these field access
expressions.

Γ ` x.??
int−−→ choice{l1, l2} Γ ` x.??

A−→ choice{l3, l4}

3.3 Synthesis
The bi-directional type inference and expansion rules from
Section 3.2 allow us to reduce the synthesis problem to a
problem of synthesizing integer/boolean unknowns. Solutions
to this problem have been described for simple imperative
programs, but solving for these choices in the context of
algebraic datatypes and highly recursive programs poses
some new challenges that have not been addressed by prior
work.

3.3.1 Inductive Decomposition
Our system follows the standard CEGIS approach to solve for
the integer unknowns that work for any non-deterministic in-
puts (bounded) [6]. For readers unfamiliar with this approach,
the most relevant aspect from the point of view of this work is
that the problem is reduced to a sequence of inductive synthe-
sis steps where the system tries to generate solutions that work
for small sets of inputs, followed by checking steps that try to
determine whether a correct solution has been found. One of
the problems with directly using CEGIS for highly recursive
problems is that the synthesizer will have to reason about the
entire function to be synthesized during every inductive step
in CEGIS. Consider the running example. The desugar code
for each variant of the srcAST is an unknown piece of code
which the synthesizer is trying to discover. At each iteration
of the CEGIS algorithm, there is a concrete value exp of type
srcAST and the synthesizer is adding constraints to enforce
that the specification is satisfied for that concrete value exp.
Now under the given specification, a given concrete exp will
exercise multiple variants within desugar. This means that
the synthesizer has to jointly search for all of these variants.

The main idea of inductive decomposition is to induc-
tively use the specification to allow the synthesizer to reason
about the code for each variant separately and thus, greatly
improving the scalability of CEGIS. This idea is depicted
in Figure 4. Normal CEGIS approach would have directly
expanded the recursive desugar calls in Figure 4b. Instead,
we delay the expansion until it is required by the interpretD
calls (Figure 4c). In most cases, this expansion is not required

because we can use the specification to inductively replace
interpretD(desugar(s)) with interpretS(s) and thus, de-
coupling the variants from one another.

(a) ADT representation of exp
(b) desugar(exp)

(c) interpretD(desugar(exp))

Figure 4: Illustration of inductive decomposition on the
running example.

4. Results and Contributions
We evaluated our approach on 22 benchmarks as shown in
Figure 5. Most of these benchmarks are beyond the scope
of what can be synthesized by other tools like Leon, and
others. It can be seen from Figure 5 that SYNTREC can
synthesize these functions in a couple of seconds to a couple
of minutes. All of these benchmarks are synthesized from
templates containing 2-5 lines of code using a library with
only two different generators. Some of these benchmarks are
discussed in more detail below.

4.1 Desugaring language constructs
Desugaring to lambda calculus We all know that lambda
calculus is a Turing-complete language and can be used to
express high level constructs like booleans, integers, pairs and
lists. However, the details of these translations are very tricky.
Indeed, these are usually given as assignments in introductory
program analysis courses and we found it is very difficult for
students to get the translations right. However, our tool can
synthesize the translations for booleans (lcB) and pairs (lcP)
down to pure lambda calculus in less than 2 minutes.

Desugaring passes in SKETCH Apart from some toy
languages, we used SYNTREC to synthesize some simple
desugaring passes in SKETCH. For example, the benchmark
compAssign desugars compound assignments such as x+ = 1
into x = x+1. A more interesting benchmark is arrAssertions
which represents a compiler pass in SKETCH that adds array
out of bounds assertion checks for every array access.

4.2 Lists and trees manipulations
We have also used SYNTREC to synthesize several data
structure manipulations such as inserting or deleting an
element from lists and trees. Figure 6 shows the synthesized

Bench Description Run time

D
es

ug
ar

bet Running example 51.3
betState Running example with mutable state 556.5
regex Desugaring regular expressions 3.3
elimBool Boolean operations to if else 2.0
compAssign Eliminates compound assignments 58.7
mergeOp Merge operations into one construct 85.6
arrAssertions Add out of bounds assertions 177.9
lcB Boolean operations to lambda calculus 24.2
lcP Pairs to lambda calculus 109.4

A
na

ly
si

s

tc Type constraints for lambda calculus 175.9

Fo
rm

ul
a

Si
m

p andLt Formula simplification 1 2.2
andNot Formula simplification 2 1.6
andOr Formula simplification 3 2.9
plusEq Formula simplification 4 7.8
mux Formula simplification 5 1.7

L
is

t lIns List insertion 8.3
lDel List deletion 10.5
lUnion Union of two lists 8.3

Tr
ee

tIns Binary search tree insertion 487.5
tDel Binary search tree deletion 269.0
tDelMin Binary search tree delete min 129.5
tDelMax Binary search tree delete max 132.0

Figure 5: Benchmarks. All reported times are in seconds.

BTree insert (BTree tree , int x) {
switch(tree){

case Branch:
BTree l = insert (tree . l , x);
BTree r = insert (tree . r , x);
if (x <= tree.v)

return Branch(v = tree.val , l = l, r= tree. r)
else

return Branch(v = tree.val , l = tree. l , r = r)
case Leaf:

if (x <= tree.v)
return Branch(val = tree.v, Leaf(v = x), null)

else
return Branch(val = tree.v, null , Leaf(v = x))

case Empty:
return Leaf(val = x) }}

Figure 6: Solution for insertion into a binary search tree

solution for insertion into an immutable binary search tree
from a 2 line template that uses the same recursiveReplacer
library function as in Section 3.1.

4.3 Type constraints for lambda calculus
This benchmark synthesizes an algorithm to produce type
constraints for lambda calculus language to be used in order
to do type inference. The output of the sketch is a conjunction
of type equality constraints which the algorithm produces by
traversing the AST which can then be solved to discover the
types of all expressions in the AST.

4.4 Formula Simplifications
In these benchmarks, we use SYNTREC to produce simpli-
fication rules on AST formulas that are used in the internal
representation of programs in SYNTREC. Here, we explore
ASTs constructed out of Numbers, Booleans, operators on
them and Multiplexer. Given a set of possible ASTs that can
be simplified, this benchmark finds a predicate for each one
them and if the predicate is satisfied, it generates an simpli-
fied formula and verifies that both the optimized version and
original AST generate same outputs. Here is an example rule
generated by our system:

equal(plus(a,b), plus(c,d)) equal(a,c)−−−−−−−→ equal(b,d)

5. Conclusion
The paper has shown that by combining type information
from algebraic datatypes together with the inductive decom-
position optimization, it is possible to efficiently synthesize
complex functions based on ADTs, including desugaring
functions for high level constructs down to lambda calcu-
lus. Even though, synthesizing full desugaring passes or other
compilation transformations for larger languages is beyond
the scope of the current work, we believe that the work in this
paper is an important step in that direction.

References
[1] R. Alur, R. Bodík, G. Juniwal, M. M. K. Martin,

M. Raghothaman, S. A. Seshia, R. Singh, A. Solar-Lezama,
E. Torlak, and A. Udupa. Syntax-guided synthesis. In Formal
Methods in Computer-Aided Design, FMCAD 2013, Portland,
OR, USA, October 20-23, 2013, pages 1–8, 2013.

[2] J. K. Feser, S. Chaudhuri, and I. Dillig. Synthesizing data struc-
ture transformations from input-output examples. In Proceed-
ings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, Portland, OR, USA, June
15-17, 2015, pages 229–239, 2015.

[3] J. P. Inala, X. Qiu, B. Lerner, and A. Solar-Lezama. Type
assisted synthesis of recursive transformers on algebraic data
types. CoRR, abs/1507.05527, 2015.

[4] V. Kuncak. Verifying and synthesizing software with recursive
functions - (invited contribution). In ICALP (1), pages 11–25,
2014.

[5] P. Osera and S. Zdancewic. Type-and-example-directed program
synthesis. In Proceedings of the 36th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation,
Portland, OR, USA, June 15-17, 2015, pages 619–630, 2015.

[6] A. Solar-Lezama. Program Synthesis By Sketching. PhD thesis,
EECS Dept., UC Berkeley, 2008.

[7] A. Solar-Lezama. Open source sketch synthesizer. 2012.

[8] A. Solar-Lezama, L. Tancau, R. Bodik, V. Saraswat, and S. Se-
shia. Combinatorial sketching for finite programs. In ASPLOS

’06, San Jose, CA, USA, 2006. ACM Press.

[9] E. Torlak and R. Bodík. A lightweight symbolic virtual machine
for solver-aided host languages. In PLDI, page 54, 2014.

	Problem and Motivation
	Background and Related Work
	Uniqueness of Approach
	Running example
	Type Directed Synthesis Constructs
	Synthesis
	Inductive Decomposition

	Results and Contributions
	Desugaring language constructs
	Lists and trees manipulations
	Type constraints for lambda calculus
	Formula Simplifications

	Conclusion

