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Abstract
Data races complicate programming language semantics,
and a data race is often a bug. Existing techniques detect
data races and define their semantics by detecting conflicts
between synchronization-free regions. However, such tech-
niques either modify hardware or slow programs dramati-
cally, preventing always-on use today.

This work describes Valor, a sound, precise, software-
only region conflict detection analysis that achieves high per-
formance by eliminating the costly analysis on each read
operation that prior approaches require. Valor instead logs
a region’s reads and lazily detects conflicts for logged reads
when the region ends. As a comparison, we have also devel-
oped FastRCD, a conflict detector that leverages the epoch
optimization strategy of the FastTrack data race detector.

We evaluate Valor, FastRCD, and FastTrack, showing
that Valor dramatically outperforms both FastRCD and Fast-
Track. Valor is the first region conflict detector to provide
strong semantic guarantees for racy program executions
with under 2X slowdown. Overall, Valor advances the state
of the art in always-on support for strong behavioral guaran-
tees for data races.

This document includes improvements to our work since
the PLDI 2015 SRC submission. Since the PLDI 2015 SRC,
the work has been published at OOPSLA 2015 [3].

Keywords Conflict exceptions; data races; dynamic analy-
sis; region serializability

1. Problem and Motivation
A data race occurs when two accesses to the same mem-
ory location are conflicting—executed by different threads
and at least one is a write—and concurrent—not ordered
by synchronization operations [8]. Data races are not only
indicative of concurrency errors, they also present a fun-
damental barrier to writing correct shared-memory, multi-
threaded programs and complicate programming language
specifications [13, 14]. Data races can lead to sequential con-
sistency (SC), atomicity, and order violations that may cor-
rupt data, cause a crash, or prevent forward progress. The
Therac-25 disaster [12], the Northeastern electricity black-
out of 2003 [20], and the mismatched NASDAQ Facebook
share prices [16] were all due to race conditions, and are a
testament to the danger posed by data races. Data races will
only become more problematic as software systems become
increasingly parallel in order to scale with parallel hardware.

A memory consistency model (or simply a memory
model) defines the set of possible orders in which memory
operations can interleave and the possible values returned by
a read. Memory models of modern programming languages
such as Java and C++ guarantee strong semantics for data-
race-free executions—the execution is SC, i.e., the execution
is equivalent to another execution where the instructions
from different threads interleave according to program or-
der [11]. This property in turn implies a much stronger guar-
antee where synchronization-free regions (SFRs) of code
appear to execute atomically, i.e., the execution of SFRs is
serializable [13]. The following figure shows an example of
SFRs, which are dynamic regions1 of code that are separated
by synchronization operations (lock acquire/release, thread
fork/join, volatile read/write, etc.) [13].

unlock(...);
...
unlock(...);
...
...
lock(...);
...
lock(...);
...
unlock(...);

SFR

SFR

SFR

SFR

However, these language memory models provide few or
no guarantees if there is a data race [1]. For example, the
behavior of a racy C++ program is undefined [6]. A re-
cent study emphasizes the difficulty of reasoning about data
races, showing that a C/C++ program with seemingly “be-
nign” data races may behave incorrectly due to compiler
transformations or architectural changes [5]. In contrast,
Java’s memory model preserves memory and type safety
despite races, but permits non-SC behaviors [14]. Unfortu-
nately, Java’s safety guarantees preclude important compiler
optimizations [18].

The complexity and risk associated with data races, and
the lack of semantics for racy executions provided by pro-
gramming languages like Java and C++ motivate this work.
Our goal in this work is to develop a mechanism that equips
present and future languages with clear, intuitive semantics
even for programs that permit data races. Recent work gives
fail-stop semantics to data races, treating a data race as an
exception [13, 15]. Our work is motivated by these efforts,
and our techniques also give data races fail-stop semantics.

1 In this work, we use SFRs and regions interchangeably.
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Figure 1: Under SFRSx, an execution generates an exception
only for a data race that may violate SFR serializability.

2. Background and Related Work
There is a long history of research into detecting data
races [7, 8]. These prior efforts are limited by a fundamen-
tal tradeoff between coverage (detecting as many data races
as possible), precision (no false positives), and efficiency.
Dynamic analyses that track the happens-before relation
are precise and find all data races in an observed execu-
tion [8]. But even with clever optimizations [8], software
happens-before data race detection imposes a high run time
cost (e.g., 8.5X slowdown [8]) because it must track (1) the
“last access” information at every memory access and (2)
the happens-before relation at every synchronization oper-
ation. The cost of maintaining information about prior ac-
cesses is especially high for mostly read-shared data; up-
dating metadata at concurrent reads trigger expensive re-
mote cache misses. Furthermore, the analysis must perform
synchronization to ensure that happens-before race checks
and metadata updates are atomic. Such high overheads of
happens-before checking prohibit their use as a basis for
programming language semantics and limit their use as a
debugging tool.

Detecting and fixing all data races seem intractable, and
eliminating them entirely from current programming lan-
guages presents other impediments. A promising, more re-
cent approach to providing strong semantics for racy pro-
gram executions is to detect and throw so-called data race
exceptions when a data race occurs [13, 15]. Prior work
called Conflict Exceptions (CE) avoids the expense of de-
tecting all happens-before races by instead detecting con-
flicts between SFRs [13]. Every SFR conflict is a true data
race, but not every data race is a conflict. CE executes a pro-
gram and either reports an exception on a SFR conflict or
ensures serializability of SFRs. We call this memory model
SFRSx. Figure 1 shows an execution with data races on two
shared variables, x and y. The dashed lines in Figure 1 in-
dicate SFR boundaries, and the labels j, j+1, etc. indicate
a per-thread SFR id which is incremented at each region
boundary. An implementation of SFRSx does not generate
a consistency exception at the read of x because the SFRs
accessing x do not overlap. In contrast, SFRSx generates
an exception at the read of y (because the SFRs accessing
y overlap), to avoid violating SFR serializability (e.g., sup-
pose Thread T1’s SFR later writes to x or y). As long as re-
gions are SFRs or larger [3, 7, 13], these approaches provide

a strong guarantee: if they do not detect a conflict, the exe-
cution is guaranteed to achieve serializability of its SFRs—
the same guarantee provided by the DRF0 memory model
but only for data-race-free executions [1]. However, exist-
ing region conflict detectors are impractical: they either rely
on custom hardware support [13] or slow programs substan-
tially [7].

3. Efficient Software-Only Region Conflict
Detection

The goal of this work is to develop a region conflict detection
mechanism that is useful for providing guarantees to a pro-
gramming language implementation, and is efficient enough
for always-on use. Our work introduces a novel, efficient re-
gion conflict detection technique called Valor. For the pur-
poses of comparison, we also propose an alternative conflict
detector called FastRCD. Both FastRCD and Valor provide
SFRSx.

3.1 FastRCD: Detecting Conflicts Eagerly
FastRCD is a new software-only dynamic analysis for de-
tecting region conflicts. FastRCD reports a conflict when
a memory access executed by one thread conflicts with a
memory access that was executed by another thread in a re-
gion that is ongoing. The FastRCD algorithm extends the
state-of-art sound and precise dynamic data race detection
analysis called FastTrack [8]. In FastRCD, each thread keeps
track of a clock that is incremented at every region bound-
ary. This clock is analogous to the logical clocks maintained
by FastTrack to track the happens-before relation. FastRCD
uses epoch optimizations similar to FastTrack’s optimiza-
tions for efficiently tracking read and write metadata. Fast-
RCD keeps track of the last region to write each shared vari-
able, and the last region or regions to read each shared vari-
able.

FastRCD provides SFRSx, similar to CE [13] which
needs custom hardware support: it either throws a serial-
izability exception at the precise point when a racy access is
about to happen, or the execution guarantees serializability
of SFRs. But despite FastRCD being a natural extension of
FastTrack, Section 4 experimentally shows that FastRCD’s
need to track last readers imposes overheads that are similar
to FastTrack’s and are too high for always-on use.

3.2 Valor: Mixing Eager and Lazy Conflict Detection

In response to FastRCD’s high overhead, we develop Valor,2
which is the main contribution of this work. Valor is a novel,
software-only region conflict detector that eliminates the
costly analysis on read operations that afflicts FastRCD (and
FastTrack). Like FastRCD, Valor reports a conflict when
a memory access executed by one thread conflicts with a
memory access previously executed by another thread in a
region that is ongoing. Valor detects write–write and write–
read conflicts eagerly as in FastRCD. The key insight in
Valor is to elide tracking of each shared variable’s last reads,
thus avoiding the high cost, incurred by existing analyses,

2 Valor is an acronym for Validating Anti-dependences Lazily On Release.
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Figure 2: (a) Like FastRCD, Valor eagerly detects a conflict
at T2’s access because the last region to write x is ongo-
ing. (b) Unlike FastRCD, Valor detects read–write conflicts
lazily. During read validation, T1 detects a write to x since
T1’s read of x.

of maintaining last reader information. This allows Valor to
achieve high performance unlike FastTrack and FastRCD.
Eliding tracking of readers imply that Valor has to detect
read–write conflicts lazily.

In Valor, each thread logs read operations locally. At the
end of a region, the thread validates its read log, checking
for read–write conflicts between its reads and any writes
in other threads’ ongoing regions. By lazily checking for
these conflicts, Valor can provide fail-stop SFRSx semantics
without hardware support and with overheads far lower than
even our optimized FastRCD implementation.

Valor only keeps track of each shared variable’s last writer
in the form of a tuple 〈v, c@t〉 that includes the “epoch” c@t
of the last region c from thread t to write x, and a version
v that the analysis increments whenever a new region writes
to x. Tracking last writer allows Valor to detect write–write
and write–read conflicts eagerly, as shown in Figure 2(a).
Similar to Figure 1, the labels j-1, j, etc. indicate a thread’s
clock that is incremented at each region boundary. The grey
text above and below each program memory access (e.g.,
〈v, p@T0〉) shows the shared variable x’s last writer metadata
before and after the access. Since Valor does not track each
shared variable’s last readers, it cannot detect read–write
conflicts at the conflicting write (shown in Figure 2(b)).
Instead, each region maintains information about its reads in
a read validation log, and detects read–write conflicts lazily
when it ends. When a region ends, read validation compares
each entry 〈x, v〉 in T1’s read log with x’s current version,
in order to detect conflicts. In Figure 2(b), x’s version has
changed to v+1, so the analysis detects a read–write conflict.
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Figure 3: Valor relies on versions to detect conflicts soundly
and precisely.

Figure 3 motivates the need for Valor to track both epoch
and version information to soundly and precisely detect
read–write conflicts when there are remote write(s) inter-
leaved before a write by the current thread. Without tracking
versions, it is challenging for T1 to infer during read valida-
tion whether there were any remote writes during the region
(Figures 3(a) and 3(b)).

Similar to Valor, a few software transactional mem-
ory (STM) systems have used mixed strategies for detect-
ing conflicts. In particular, McRT-STM [17] and Bartok-
STM [10] detect write–write and write–read conflicts ea-
gerly and read–write conflicts lazily. However, these STMs
use more expensive techniques to validate reads differently
from Valor. Another difference is that Valor must detect
conflicts precisely, whereas STMs do not (a false conflict
triggers an unnecessary abort and retry). As a result, STMs
typically track conflicts at the granularity of objects or cache
lines. More generally, STMs have not introduced designs
that target region conflict detection or precise exceptions.
In some sense, our work applies insights from STMs to the
context of data race exceptions.

Implications of lazy conflict detection. Since Valor detects
read–write conflicts lazily it cannot provide precise excep-
tions, which is acceptable as long as the effects of poten-
tially conflicting regions do not become externally visible.
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Figure 4: Run-time and space overhead added to unmodified Jikes RVM by our implementations of FastTrack, FastRCD, and
Valor.

A region that performs a read that conflicts with a later write
can behave in a way that would be impossible in any unseri-
alizable execution. We refer to such regions as “zombie” re-
gions, borrowing terminology from STM systems that expe-
rience similar issues by detecting conflicts lazily [9]. To pre-
vent external visibility, Valor must validate a region’s reads
before all sensitive operations, such as system calls and I/O.
Similarly, a zombie region might never end (e.g., might get
stuck in an infinite loop), even if such behavior is impossible
under any region serializable execution. To account for this
possibility, Valor must periodically validate reads in a long-
running region. Other conflict and data race detectors have
detected conflicts asynchronously [19], providing imprecise
exceptions and similar guarantees.

In an implementation for a memory- and type-unsafe lan-
guage such as C or C++, a zombie region can corrupt mem-
ory and types arbitrarily. The situation is not so dire for
Valor, which detects region conflicts in order to throw con-
flict exceptions, rather than to preserve region serializability.
As long as a zombie region does not actually corrupt Valor’s
analysis state, read validation will be able to detect the con-
flict when it eventually executes—either when the region
ends, at a system call, or periodically (in case of an infinite
loop). Our implementation targets a safe language (Java), so
a zombie region’s possible effects are safely limited.

Extending regions. Valor extends regions to detect con-
flicts among release-free regions (RFRs)—regions which are
bounded only by synchronization release operations. Since
RFRs are always at least as large as an SFR, this design
allows Valor to potentially detect more conflicts and thus
true data races and also amortizes the cost of read validation
performed at region boundaries. We prove in our OOPSLA
2015 paper that RFR conflicts are true data races, and that
Valor is a sound and precise region conflict detector [3].

There are useful analogies between RFR conflict detec-
tion and prior work. Happens-before data race detectors in-
crement their epochs at release operations only [8], and some
prior work extends redundant instrumentation analysis past
acquire, but not release, operations [7].

4. Results

We have implemented a prototype of Valor in Jikes RVM
3.1.3 [2], a high-performance Java virtual machine (JVM) [3].
For comparison purposes, we have implemented current
state-of-art happens-before analysis called FastTrack [8] and
FastRCD. For our evaluation, we used benchmarks from the
DaCapo 2006 and 9.12-bach suite [4], and fixed-workload
versions of SPECjbb2000 and SPECjbb2005. We did our
experiments on an AMD Opteron 6272 system with eight
8-core 2.0-GHz processors (64 cores total), running RedHat
Enterprise Linux 6.6, kernel 2.6.32

For our experiments, both the conflict detectors use RFRs
as regions. We evaluate different metrics to compare the
three analyses: performance and space overhead, scalabil-
ity, and data race coverage. Figure 4(a) shows the runtime
overhead added over unmodified Jikes RVM by the three
implementations. Each bar is the average of ten trials and
has a 95% confidence interval centered at the mean. Fast-
Track adds 342% overhead, whereas FastRCD introduces an
overhead of 267%. The primary result of our work is that
Valor incurs only 99% overhead on average, far exceeding
the performance of any prior software-based conflict detec-
tion technique.

Figure 4(b) shows the space overhead, relative to baseline
(unmodified JVM) execution for the same configurations as
in Figure 4(a). We measure an execution’s space usage as
the maximum memory used after any full-heap garbage col-
lection (GC). We omit luindex9 since the unmodified JVM
triggers no full-heap GCs, although each of the three anal-
yses does. Unsurprisingly, FastTrack uses more space than
FastRCD since it maintains more metadata. Valor sometimes
adds less space than FastRCD; other times it adds more. This
result is due to the analyses’ different approaches for main-
taining read information: FastRCD uses per-variable shared
metadata, whereas Valor logs reads in per-thread buffers. On
average, Valor uses less memory than FastRCD and a little
more than half as much memory as FastTrack.

Our full paper includes additional performance and scala-
bility overhead results [3]. For example, to measure the sen-
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FastTrack FastRCD Valor

eclipse6 37 (46) 3 (7) 4 (21)
hsqldb6 10 (10) 10 (10) 9 (9)
lusearch6 0 (0) 0 (0) 0 (0)
xalan6 12 (16) 11 (15) 12 (16)
avrora9 7 (7) 7 (7) 7 (8)
jython9 0 (0) 0 (0) 0 (0)
luindex9 1 (1) 0 (0) 0 (0)
lusearch9 3 (4) 3 (5) 4 (5)
pmd9 96 (108) 43 (56) 50 (67)
sunflow9 10 (10) 2 (2) 2 (2)
xalan9 33 (39) 32 (40) 20 (39)
pjbb2000 7 (7) 0 (1) 1 (4)
pjbb2005 28 (28) 30 (30) 31 (31)

Table 1: Data races reported by FastTrack, FastRCD, and
Valor.

sitivity to system architecture, we also evaluated the perfor-
mance on a 32-core Intel Xeon E5-4620 system. The rela-
tive performance of the three techniques remain comparable.
Valor continues to substantially outperform the other tech-
niques. For the benchmarks that permit a variable number of
threads, our scalability results show that all three techniques
scale with an increasing number of threads [3].

FastTrack detects every data race in an execution. In con-
trast, Valor and FastRCD focus on supporting the SFRSx
memory model, so they detect only region conflicts, not all
data races. That said, an interesting question is how many
data races manifest as region conflicts in typical executions,
and how does FastRCD and Valor fare in terms of coverage
compared to FastTrack? Table 1 shows the data race cov-
erage of Valor and FastRCD and compares with FastTrack,
by collecting data races reported at least once in ten trials.
If the same race is detected multiple times in an execution,
we count it only once. The first number for each detector is
the average number of races (rounded to the nearest whole
number) reported across 10 trials. The number in parenthe-
ses is the count of races reported at least once across all 10
trials. Overall, FastRCD and Valor detect fewer races than
FastTrack. On average across the programs, one run of ei-
ther FastRCD or Valor detects 58% of the true data races.
Counting data races reported at least once across 10 trials,
the percentage increases to 63% for FastRCD and 73% for
Valor, respectively. Compared to FastTrack, FastRCD and
Valor represent lower coverage, higher performance points
in the performance–coverage tradeoff space. We note that
FastRCD and Valor are able to detect any data race, because
any data race can manifest as a region conflict [7]. We em-
phasize that although FastRCD and Valor miss some data
races, the reported races involve accesses that are dynami-
cally “close enough” together to jeopardize region serializ-
ability. We (and others [7, 13, 15]) argue that region conflicts
are therefore more harmful than other data races, and it is
more important to fix them.

5. Contributions
This work introduces two new software-based region con-
flict detectors, FastRCD and Valor. Valor substantially out-
performs prior software-based conflict detection techniques.

The key insight behind Valor is that detecting read–write
conflicts lazily retains necessary correctness guarantees and
has better performance than eager conflict detection. Valor’s
overhead is potentially low enough to use all-the-time con-
flict exceptions in various settings, from in-house testing to
alpha and beta testing to potentially even some production
systems. Overall, Valor represents an advance in the state of
the art for providing strong semantic guarantees for racy ex-
ecutions.
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