
Modularity: G: Interoperability and
Composition of DSLs with Melange

Thomas Degueule
Inria, France

thomas.degueule@inria.fr

Abstract
Domain-Specific Languages (DSLs) are now developed for a
wide variety of domains to address specific concerns in the
development of complex systems. However, DSLs and their
tooling still suffer from substantial development costs which
hamper their successful adoption in the industry. For over
a decade, researchers and practitioners have developed lan-
guage workbenches with the promise to ease the development
of DSLs. Despite many advances, there is still little support
for advanced scenarios such as language evolution, composi-
tion, and interoperability. In this paper, we present a modular
approach for assembling DSLs from other ones and seam-
lessly evolving them, while ensuring the reuse of associated
tools through subsequent versions or across similar DSLs.
We introduce the theoretical foundations of our approach, its
implementation in the Melange language workbench, and
summarize its benefits on various case studies.

1. Problem and Motivation
The development of complex software-intensive systems in-
volves many stakeholders who bring their expertise on spe-
cific concerns of the developed system. Model-Driven En-
gineering (MDE) proposes to address each concern sepa-
rately with a dedicated Domain-Specific Language (DSL)
closely linked to the needs of each stakeholder [15]. With
DSLs, stakeholders express their models in terms of problem-
level abstractions. Associated tools are then used to semi-
automatically transform the models into concrete software
artifacts. Amongst the different kinds of DSLs (internal, em-
bedded, external), external DSLs offer the best flexibility [12].
However, the definition of an external DSL (syntax and se-
mantics) and its environment (e.g. checkers, editors, genera-
tors, IDEs) still requires substantial development efforts for,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CONF ’yy, Month d–d, 20yy, City, ST, Country.
Copyright c© 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

by definition, a limited audience. The Software Language
Engineering community thus focuses on the development of
tools and methods that ease the development of DSLs.

Although DSLs are by definition tied to a particular do-
main, one can see the emergence of recurrent paradigms
shared by various DSLs used in different areas. Finite-state
machine (FSM) languages, for instance, are used in many
distinct contexts (e.g. language processing, user interfaces,
systems and software engineering). While variants of FSM
languages share many common concepts, they also exhibit
syntactic and semantic variation points imposed by the speci-
ficities of the domain [6]. Redefining from scratch a new
FSM language for each new domain contrasts with the good
practices established in software engineering. Instead, lan-
guage workbenches should provide language designers with
the ability to import existing DSL specifications, customize
and compose them to build new ones for other domains.

Another recurring problem in DSL development results
from the fact that the tooling defined around a given language
is highly coupled with it. Therefore, DSLs are extremely
fragile to evolution: when a DSL evolves, its environment
(e.g., IDE) and the models created from it must be updated
consequently. As DSLs evolve at a rather fast pace, this has
severe consequences. The coupling between DSLs and their
tooling also prevents the manipulation of models in different
modeling environments. It is for instance not possible to share
the same model between two FSM modeling environment
(e.g. used by two different stakeholders), even when they
share a lot of commonalities. This lack of flexibility and
interoperability makes the work of language users difficult,
as they cannot benefit from tools defined for different yet
similar DSLs.

In this paper, we identify that this lack of flexibility arises
from the theoretical foundations of MDE. To circumvent
these limitations, we propose the notion of language interface
that we use to design composition operators that ease the work
of language designers, and to design a dedicated type system
that provides more flexibility in model manipulation to DSL
users.

The remainder of this paper is organized as follows.
Section 2 gives some background notions and an overview of
the related work. Section 3 details our approach. Section 4



presents the Melange language workbench and the results we
gathered through its application to various case studies.

2. Background and Related Work
DSLs are typically defined through three main concerns: ab-
stract syntax, concrete syntax(es) and semantics. Various
approaches may be employed to specify each of them, usu-
ally using dedicated meta-languages [34]. The abstract syn-
tax specifies the domain concepts and their relations and is
defined by a metamodel or a grammar. This choice often de-
pends on the language designer’s background and culture. Ex-
amples of meta-languages for specifying the abstract syntax
of a DSL include EMOF [1] and SDF [17]. The semantics of
a DSL can be defined using axiomatic semantics, denotational
semantics, operational semantics, and their variants [26]. Con-
crete syntaxes are usually specified as a mapping from the
abstract syntax to textual or graphical representations, e.g.
through the definition of a parser or a projectional editor [36].
In this paper, we focus on DSLs whose abstract syntaxes
are defined with metamodels and whose semantics are de-
fined in an operational way through the definition of com-
putational steps designed following the interpreter pattern.
Computational steps may be defined in different ways, e.g.
using aspect-oriented modeling [18] or endogenous trans-
formations. In this paper, however, we only focus on the
weaving of computational steps in an object-oriented (OO)
fashion with the interpreter pattern. In such a case, specifying
the operational semantics of a DSL involves the use of an
action language to define methods that are statically intro-
duced directly in the corresponding concepts of its abstract
syntax [19].

2.1 Modular Development of DSLs
Recent work in the community of Software Language Engi-
neering focused on language workbenches that support the
modular design of DSLs, and the possible reuse of such
modules [21, 32]. Besides, particular composition opera-
tors have been proposed for unifying or extending exist-
ing languages [11, 24]. Other techniques have been stud-
ied for addressing the challenge of language extension and
composition, such as projectional editing [35] or compos-
able meta-languages [37]. Other authors demonstrated the
possibility to create language modules using attribute gram-
mars [20, 25, 29]. MontiCore applied modularity concepts
for designing new DSLs by extending an existing one, or by
composing other DSLs [22]. Finally, some works propose
to leverage concepts from the component-based software en-
gineering community to modularly develop DSLs [32, 38].
However, while most of the approaches propose either a dif-
fuse way to reuse language modules, or to reuse as is complete
languages, there is still little support for easily assembling
language modules with customization facilities (e.g. restric-
tion, specialization) in order to finely tune the resulting DSL
according to the language designer’s requirements.

2.2 Model Transformation Reuse
To ease the use of a DSL by stakeholders, language designers
usually develop an associated modeling environment with
dedicated editors, simulators, transformations, generators,
etc.. Typically, these different tools are model transforma-
tions that manipulate the models conforming to a given DSL.
To state whether a model conforms to a given DSL, MDE re-
lies on the conformance relation that stands between a model
and its metamodel [2, 3, 14]. The conformance relation plays
a crucial role in MDE as it identifies which models are valid
instances of a given DSL and how they should be safely
manipulated. A fundamental property of the conformance
relation is that a model conforms to one, and only one, meta-
model. Therefore, when the metamodel defining the abstract
syntax of a DSL evolves, the models no longer conform to
it. As a consequence, all the tools and transformations de-
fined around it must be updated. The research community
has identified this problem of transformation reuse and pro-
posed techniques to design generic model transformations.
Varró and Pataricza introduced variable entities in patterns
for declarative transformation rules [33]. Later, Cuccuru et al.
introduced the notion of semantic variation points in meta-
models [7]. Sánchez Cuadrado and García Molina propose a
notion of substitutability based on model typing and model
type matching [28]. De Lara and Guerra present the concept
mechanism, along with model templates and mixin layers [8].
However, all these approaches require either to design meta-
models and transformations in a special way, or to explicitly
write the bindings between similar DSLs. As we shall see in
the next section, our approach does not require any additional
work from the language designer or user when the languages
are similar enough, such as different versions or variants of a
DSL.

3. Approach and Uniqueness
We structure our approach around two interconnected contri-
butions: a dedicated type system for language interoperability
and an algebra of operators for language composition. These
two contributions rely on a common core concept of lan-
guage interface. The operators and relations discussed in this
section are summarized in Figure 1.

Language interfaces allow to abstract some of the intrinsic
complexity carried in the implementation of languages, by
exposing meaningful information (i) concerning an aspect
of a language (e.g. syntactical constructs) (ii) for a specific
purpose (e.g. composition, reuse, coordination) (iii) in an
appropriate formalism (e.g. a metamodel). In this regard,
language interfaces can be thought of as a reasoning layer
atop language implementations. The definition of language
interfaces relies on proper formalisms for expressing different
kinds of interfaces and binding relations between language
implementations and interfaces. Interfaces may be manually
crafted (thereby defining a contract) or automatically inferred
from an existing language. Using language interfaces, one



«implements»

«implements»

«subtypeOf»
«inherit»
«merge»
«slice»

MT

MT'

L

Syntax Semantics

«weave»

L'

Syntax Semantics

«weave»

«typedBy»«conformsTo»

Model

Language
Implementations

Language
Interfaces

t

t

«import»

«import»

Figure 1. Model Types (MT) as a Typing Layer on top of
Language Implementations

can vary or evolve the implementation of a language while
preserving its interface.

In this paper, we focus on one kind of language interface:
model types. Model types are structural interfaces over a lan-
guage. As such, a model type specifies how a model written
in a given language can be manipulated. All the features of a
language, including those specific to its semantics (e.g. the
methods used to initialize a simulation or invoke an inter-
preter) are exposed and accessible through its unified inter-
face materialized in a model type. Models are linked to model
types by a typing relation [30]. Most importantly, model types
are linked one another by subtyping relations [16]. These re-
lations are supported by a model-oriented type system that
leverages family polymorphism [13] and structural typing to
provide model polymorphism, i.e. the ability to safely manip-
ulate a model through different interfaces. This mechanism
can be understood intuitively by analogy with polymorphism
in object-oriented languages: models play the role of objects,
languages of classes, and model types of interfaces. Model
polymorphism enables the definition of generic tools that can
manipulate any model matching the interface on which they
are defined, regardless of their concrete language. Doing so,
modeling environments are much more resilient to evolution,
as new versions of a DSL are likely to preserve its interface,
or lead to a new interface that subtypes the previous one.
Additionally, DSLs designed in different domains that share
some commonalities (such as variants of a FSM language)
are likely to match the same interface1. One can for example
design a generic flatten transformation on an abstract FSM
model type and reuse it for several variants or versions of
FSM languages, provided that they implement the appropriate
model type.

1 Structural dissimilarities between two languages (such as different names
for the same concept) may be fixed using adaptation mechanisms that are
beyond the scope of this paper.

Besides, model types provide a reasoning layer that al-
lows to reason on language implementations. We use this
reasoning layer to define an algebra of operators for language
assembly and composition [10]. The import operators de-
picted in Figure 1 enable to import fragments of syntax and
semantics to form new languages (L and L’). Model types are
used to check the correctness of the assembly, e.g. to assess
that a given semantics fragment can be structurally applied to
a given syntax fragment. New DSLs can then be manipulated
as first-class entities to be specialized (inherit), composed
(merge), or restricted (slice). Each of these operators takes
both syntax and semantics into account and relies on the
aforementioned type system to statically ensure the structural
correctness of the produced DSLs. The merge operator serves
as a language unification mechanism [11] and is inspired by
the UML PackageMerge relation [27]. The slice operator is in-
spired by model slicing [4] and consists in extracting a subset
of an existing language to be imported in a new one. Finally,
the inherits operator allows to reuse the definition of one or
more super-languages into a new language. In addition to the
merge operator, the inherits operator ensures that the resulting
language remains compatible with its super-languages, i.e.
the tools defined on a super-language can always be reused
without adaptation on its sub-language. This set of opera-
tors enable language designers to reuse as much as possible
other DSLs for the creation of new ones with customization
facilities. The associated type system checks the structural
correctness of the composed languages and provides the abil-
ity to safely manipulate models in different environments.

4. Results and Contribution
We implemented our approach in the Melange language
workbench [10]. Melange consists of a set of Eclipse plug-ins
seamlessly integrated with the de facto industrial standard
Eclipse Modeling Framework [31] and is available under
the Eclipse Public License (EPL) on Github 2. Melange is
composed of two main parts:

• A language workbench where language designers can
define the syntax and semantics of their own DSLs, use
composition operators to assemble legacy DSLs into new
ones, implement syntactic and semantic variation points,
extend existing DSLs, etc.;

• The MelangeResource, a mechanism integrated with EMF
that provides model polymorphism to any EMF-based
tool of the Eclipse modeling ecosystem in a non-intrusive
way.

In the Melange language workbench, language designers
use a concise language for designing the syntax and semantics
of their DSLs, as illustrated in Figure 2. This language in-
corporates the composition operators and the model-oriented
type system introduced in Section 3. In particular, each DSL

2 https://github.com/diverse-project/melange/

https://github.com/diverse-project/melange/


is associated to its structural interface captured in a model
type. Based on the subtyping relation automatically inferred
between model types, the MelangeResource provides model
polymorphism and substitutability to the EMF ecosystem.
Popular model transformation tools, such as ATL [], QVTo [],
or even Java code, can then manipulate the models conform-
ing to the created DSLs in a safe and polymorphic way
The MelangeResource transparently provides model polymor-
phism while the transformation tool itself remains agnostic
of this mechanism.

Figure 2. Modular Definition of a FSM Language in The
Melange Language Workbench

Melange was used for the definition of an executable
DSL for the design and simulation of Internet of Things
(IoT) systems. The resulting IoT language is inspired from
both general-purpose executable modeling languages such
as fUML and modeling languages dedicated to IoT such as
ThingML. Specifically, we designed the IoT language as an
assembly of publicly-available DSLs on Github: (i) an IDL
language for specifying the structural interface of sensors
(ii) Lua for expressing their behavior and (iii) an activity
diagram to express concrete scenarios involving different sen-
sors. Taken independently, each of these languages has been
defined by different groups of people for specific purposes,
unrelated to IoT systems. Combining them in a consistent
way, however, leads to a new DSL particularly suited to a new
context, i.e. the IoT domain. Because most of their syntax
and semantics can be reused as is, this drastically reduce the
development costs compared to a top-down approach, with
no penalty in terms of runtime performance of the resulting
language. More information on this case study can be found
in [9, 10].

Within the ANR INS project GEMOC 3, we used Melange
to define the operational semantics of various DSLs (activity
diagrams, timed finite-state machines, Internet of Things

3 http://gemoc.org/ins/

languages, etc.), and infer the resulting structural interfaces
atop which we defined editors and simulators.

Another case study involved the design of a family of
statechart languages exposing syntactic variation points
(e.g. hiearchical, with time constraints) and semantic varia-
tion points (e.g. run-to-completion or simultaneous events
processing policies). While all these languages differ in some
ways, they also match the same common interface on top
of which we define a set of generic tools for pretty-printing,
flattening, and executing statecharts.

Melange was used as part of our submission [5] to the
“model execution” case study of the 8th Transformation Tool
Contest 4. This case study consisted in the specification of
the operational semantics of a subset of the UML activity
diagram language. In this context, Melange was used to
extend the original activity diagram metamodel with its
operational semantics, infer the corresponding interfaces,
and provide substitutability between the original metamodel
and the executable one. Our submission earned the “overall
winner prize” of the model execution case study.

Current investigations of Melange include the definition
and management of viewpoints on a large-scale systems
engineering language named Capella 5 in collaboration with
Thales Group. The goal is to modularly extend the Capella
language with task-specific information (e.g. for performance
or cost analysis) while retaining the compatibility with all the
tools of the Capella environment.

Based on the recent collaborations, we are also investigat-
ing the extension of Melange to support behavioral semantics
expressed in xMOF [23].

References
[1] MOF, 2.0 core final adopted specification, 2004.

[2] C. Atkinson and T. Kühne. Profiles in a strict metamodeling
framework. Science of Comp. Program., 44(1):5–22, 2002.

[3] J. Bézivin and O. Gerbé. Towards a Precise Definition of the
OMG/MDA Framework. In Proc. of ASE’01, pages 273–280,
2001.

[4] A. Blouin, B. Combemale, B. Baudry, and O. Beaudoux.
Kompren: Modeling and generating model slicers. Software
and Systems Modeling (SoSyM), pages 1–17, 2012.

[5] B. Combemale, J. Deantoni, O. Barais, A. Blouin, E. Bousse,
C. Brun, T. Degueule, and D. Vojtisek. A solution to the
ttc’15 model execution case using the gemoc studio. In 8th
Transformation Tool Contest. CEUR, 2015.

[6] M. L. Crane and J. Dingel. Uml vs. classical vs. rhapsody
statecharts: Not all models are created equal. In Model Driven
Engineering Languages and Systems, pages 97–112. Springer,
2005.

[7] A. Cuccuru, C. Mraidha, F. Terrier, and S. Gérard. Templatable
metamodels for semantic variation points. In Proc. of ECMDA-
FA’07, pages 68–82, 2007.

4 http://www.transformation-tool-contest.eu/2015/
5 https://polarsys.org/capella/

http://gemoc.org/ins/
http://www.transformation-tool-contest.eu/2015/
https://polarsys.org/capella/


[8] J. De Lara and E. Guerra. Generic meta-modelling with
concepts, templates and mixin layers. In Proc. of MODELS’10,
pages 16–30, 2010.

[9] T. Degueule, B. Combemale, A. Blouin, and O. Barais. Reusing
legacy dsls with melange. In 15th Workshop on Domain-
Specific Modeling, 2015.

[10] T. Degueule, B. Combemale, A. Blouin, O. Barais, and J.-
M. Jézéquel. Melange: A meta-language for modular and
reusable development of dsls. In Proceedings of the 2015 ACM
SIGPLAN International Conference on Software Language
Engineering, pages 25–36. ACM, 2015.

[11] S. Erdweg, P. G. Giarrusso, and T. Rendel. Language com-
position untangled. In Proc. of the Workshop on Language
Descriptions, Tools, and Applications, page 7, 2012.

[12] S. Erdweg, S. Fehrenbach, and K. Ostermann. Evolution of
software systems with extensible languages and dsls. Software,
IEEE, 31(5):68–75, 2014.

[13] E. Ernst. Family polymorphism. In ECOOP 2001—Object-
Oriented Programming, pages 303–326. Springer, 2001.

[14] J.-M. Favre. Foundations of Meta-Pyramids: Languages
vs. Metamodels - Episode II: Story of Thotus the Baboon.
Dagstuhl Reports, 2004.

[15] R. France and B. Rumpe. Model-driven development of
complex software: A research roadmap. In 2007 Future of
Software Engineering, pages 37–54. IEEE Computer Society,
2007.

[16] C. Guy, B. Combemale, S. Derrien, J. R. Steel, and J.-M.
Jézéquel. On model subtyping. In Modelling Foundations
and Applications, pages 400–415. Springer, 2012.

[17] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The
syntax definition formalism sdf—reference manual—. ACM
Sigplan Notices, 24(11):43–75, 1989.

[18] J.-M. Jézéquel. Model driven design and aspect weaving.
Software & Systems Modeling, 7(2):209–218, 2008.

[19] J.-M. Jézéquel, B. Combemale, O. Barais, M. Monperrus, and
F. Fouquet. Mashup of metalanguages and its implementation
in the kermeta language workbench. Software & Systems
Modeling, pages 1–16, 2013.

[20] U. Kastens and W. Waite. Modularity and reusability in
attribute grammars. Acta Informatica, 31(7):601–627, 1994.

[21] L. C. Kats and E. Visser. The spoofax language workbench:
rules for declarative specification of languages and IDEs,
volume 45. ACM, 2010.

[22] H. Krahn, B. Rumpe, and S. Völkel. Monticore: a framework
for compositional development of domain specific languages.
JSTT, 12(5):353–372, 2010.

[23] T. Mayerhofer, P. Langer, M. Wimmer, and G. Kappel. xmof:
Executable dsmls based on fuml. In Software Language
Engineering, pages 56–75. Springer, 2013.

[24] M. Mernik. An object-oriented approach to language composi-
tions for software language engineering. Journal of Systems
and Software, 86(9):2451 – 2464, 2013.

[25] M. Mernik and V. Zumer. Reusability of formal specifications
in programming language description. In 8th Annual Workshop
on Software Reuse, WISR8, pages 1–4, 1997.

[26] P. D. Mosses. The varieties of programming language seman-
tics and their uses. In Perspectives of System Informatics, pages
165–190. Springer, 2001.

[27] Unified Modeling Language 2.0, Infrastructure. OMG, 2005.

[28] J. Sánchez Cuadrado and J. García Molina. Approaches for
model transformation reuse: Factorization and composition. In
Proc. of ICMT’08, pages 168–182, 2008.

[29] J. a. Saraiva. Component-based programming for higher-order
attribute grammars. In Proc. of GPCE, pages 268–282, 2002.

[30] J. Steel and J.-M. Jézéquel. On model typing. Software &
Systems Modeling, 6(4):401–413, 2007.

[31] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro. EMF:
eclipse modeling framework. Pearson Education, 2008.

[32] E. Vacchi and W. Cazzola. Neverlang: A framework for feature-
oriented language development. Computer Languages, Systems
& Structures, 2015.

[33] D. Varró and A. Pataricza. Generic and meta-transformations
for model transformation engineering. In Proc. of UML’04,
pages 290–304, 2004.

[34] E. Visser, G. Wachsmuth, A. Tolmach, P. Neron, V. Vergu,
A. Passalaqua, and G. Konat. A language designer’s work-
bench: A one-stop-shop for implementation and verification
of language designs. In Proceedings of the 2014 ACM In-
ternational Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software, pages 95–111. ACM,
2014.

[35] M. Voelter. Language and IDE modularization, extension and
composition with MPS. Generative and Transformational
Techniques in Software Engineering, 2011.

[36] M. Voelter, B. Kolb, and J. Warmer. Projecting a modular
future. 2014.

[37] M. Völter and E. Visser. Language extension and composi-
tion with language workbenches. In Proc. of the OOPSLA
companion, pages 301–304. ACM, 2010.

[38] S. Živković and D. Karagiannis. Towards metamodelling-in-
the-large: Interface-based composition for modular metamodel
development. In Enterprise, Business-Process and Information
Systems Modeling, pages 413–428. Springer, 2015.


	1 Problem and Motivation
	2 Background and Related Work
	2.1 Modular Development of DSLs
	2.2 Model Transformation Reuse

	3 Approach and Uniqueness
	4 Results and Contribution

